
WHITE PAPER

Ensure application
performance amid chaos

Ensure application performance amid chaos 2/8

Contents

Introduction to chaos testing 4

How chaos testing works 4

Why use chaos testing? 5

How to start chaos testing 6

Conclusion 8

Ensure application performance amid chaos 3/8

Chaos testing is a vital part of chaos engineering, a discipline
focused on assessing a system’s resilience to unexpected
disruptions. Unlike traditional testing methods that
simulate known failures, chaos testing introduces random,
unconventional scenarios—like network outages or sudden
traffic spikes—to evaluate how systems perform under stress.

The process involves simulating unusual events to identify
vulnerabilities before they lead to real-world issues. Key
performance indicators (KPIs) are established to monitor
system stability, helping teams define an acceptable blast
radius to minimize user impact. This proactive approach
not only uncovers weaknesses but also enhances recovery
mechanisms, improving overall system resilience.

The benefits of chaos testing include increased system
robustness, reduced downtime, and better understanding
of system behaviors. It helps teams prepare for incidents
and improves customer satisfaction by preventing
service disruptions.

Integrating chaos testing into existing frameworks, such as
OpenText™ performance engineering solutions, allows for a
comprehensive testing strategy.

Ensure application performance amid chaos 4/8

Introduction to chaos testing
Chaos testing is a subset of chaos engineering devoted to testing. Chaos
engineering is the discipline of experimenting with a system to build
confidence in the system’s capability to withstand turbulent conditions in
production. By ensuring the system can withstand chaotic fluctuations, you
can be confident in its ability to handle unexpected real-world issues. This
could include situations such as infrastructure, network, or power failures at
various points in the system.

It’s hard to imagine a software development team that doesn’t do any
testing. Whether unit, integration, functional, performance, security, or even
manual—software testing is widely accepted as a best practice in the software
development lifecycle (SDLC). Usually, companies plan and create test
exercises ahead of time. These often involve applying frequent test cases to
expected events.

However, the bugs and vulnerabilities that set the stage for major system
failure, exploitation, or intrusion result from unexpected events. The primary
difference between ordinary testing and chaos testing is the scale and the
results. Chaos testing tries to ensure that even in the event of chaos, software
systems keep functioning and watching client requests, even if entire parts of
the system crash.

This paper walks you through chaos testing, how it works, and why and how
you should use it.

How chaos testing works
Chaos testing involves the simulation or injection of unusual events into the
system. We should do this proactively—before these events have a chance to
cause unscheduled downtimes or other impacts on the user experience.

Chaos testing works by hammering applications with unusual use cases, such
as sending malformed inputs to a web app, overloading an app with traffic,
deliberately trying to trigger common vulnerabilities and exposures (CVEs), or
well-known attacks like SQL injection.

Typically, we want to define key performance indicators (KPIs) to track the
system’s steady state in production. So, we define an acceptable blast radius
before actively trying to break or disrupt the test target, so as not to cause a
decline in user experience.

KPIs do differ, but typically the goals are to decrease the rate of failures
caused by changes, reduce time spent putting out fires, and limit the duration
of any downtime. As you might imagine, an effective monitoring system is
important in these tests. For example, does the monitoring system alert key
personnel before, during, and after threshold breaches? How about incident
logs? Are they generated in real-time, are they tamper-proof, and do they
catch all issues?

We might want to confirm that automated mitigation, such as horizontal
and vertical scaling, works correctly in our CI/CD pipeline. Are more virtual
machines (VMs) or containers spun up when there are increasing concurrent

Questions to ask
yourself about
chaos testing:
• What is chaos testing?

• What is the difference
between chaos testing and
chaos engineering?

• What kind of challenges can
be solved by chaos testing?

• What are some examples of
real-world applications that
use chaos engineering today?

• Can you simulate chaos
attacks on your systems?

• Are there any tools
available today that
embrace chaos testing?

https://www.microfocus.com/en-us/products/uft-one/overview
https://www.microfocus.com/en-us/portfolio/performance-engineering/overview
https://www.microfocus.com/en-us/cyberres/application-security

Ensure application performance amid chaos 5/8

requests? Is more computing power applied to a VM in the event of a
heightened and prolonged processing complexity? What happens when
system clocks in financial workloads are deliberately unsynchronized—does
the system stop? Is the customer erroneously debited or credited? Are
transaction receipts delivered late or not at all?

This sort of testing gives greater insight into the interventions or upgrades that
could strengthen the system.

Why use chaos testing?
Try as we might, we cannot predict every production mishap. From an
infrastructure misconfiguration, a single-line error from a developer, a slow
microservice that impacts system-wide latency, or even simple human error—if
something has the potential to go wrong, it probably will. That is why we test.
But why specifically use chaos testing?

It improves the resilience of the system
Chaos testing helps determine resilience in production by deliberately
experimenting with uncommon failures to see if the system’s failback and
failover mechanisms work. Typically, testing involves checking every issue
your team usually encounters, excluding the unexpected. Chaos testing fills
that hole and uses the information from your experiments to strengthen your
system against such failures.

Ensure application performance amid chaos 6/8

It reduces system downtime
Chaos engineering helps you understand system behavior during a failure and
helps to uncover the path to sub-systems’ recovery. This means that you can
swiftly figure out and possibly avoid or mitigate major IT failures, reducing
valuable production time loss, having to pay huge sums in damages, or impacts
to investor confidence.

It identifies weaknesses of the system
Chaos testing is important because it generates knowledge about the system’s
behaviors, properties, and performance. A distributed system usually tends
to have more failure points due to its complexity and largescale nature. Chaos
testing tries to discover those failure points and identify what happens in the
case of resource or object unavailability. In cases where you are hesitant to try
new technologies because of reliability concerns, chaos testing identifies weak
points and measures actual system behavior in real time under those conditions.

It prepares your team
For employers, an accidental benefit of chaos testing is that it reflects team
incident response preparedness. The testing exercise is an opportunity to
address process gaps and how emergency approvals work when needed,
appraise technical knowledge and soft skills under pressure, and find out if
you should retrain. This is especially important when your organization comes
under statutory regulatory assessment for certification or endorsement.

It improves customer satisfaction
A final benefit of chaos testing is that it prevents service disruption through early
identification of potential outages, which in turn improves the user experience.

How to start chaos testing
The first step for successful chaos testing is to acknowledge that you need
it. Regardless of the ability and foresight of your team, unexpected issues are
going to arise with your system. Chaos testing is important for strengthening
resiliency and giving you the confidence to know that whatever happens, your
system responds well. Once your team understands the importance of chaos
testing, here’s how you start.

Choosing a tool
You could start by using open source tools, such as Chaos Monkey or
ChaosBlade. Chaos Monkey only has the shutdown attack and requires a
spinnaker and MySQL. It works by sending a shutdown request to any random
VM in your architecture at any point within a set time. Before the attack
launches, you might want to check whether there is an ongoing outage. To do
this, you must write a custom Go script. This tool has severe limits for modern-
day testing, which is why it is not popular.

https://www.gremlin.com/chaos-monkey/?ref=blog
https://chaosblade.io/
https://spinnaker.io/

Ensure application performance amid chaos 7/8

In contrast, ChaosBlade provides multiple attack types—including resource
consumption, packet loss, and more—for testing baremetal, containers, and
Kubernetes workloads. It also supports fault injection at the application level
for C++, Java™, and NodeJS applications. Examples of these types of faults are
delayed code execution, arbitrary code insertion, and memory value modification.

ChaosBlade has limitations though: it is not GUI supported, the documentation
is in Chinese, it requires coding knowledge, and the learning curve is steep.

The most prolific single chaos testing tool available is Gremlin. It features
a wide range of attack vectors that you can apply to VM, containers, and
Kubernetes workloads at resource, state, and network strata over an intuitive
GUI. For example, you can choose to simulate a state test for VM by selecting
preferred options on a web form, like killing a system process, changing
system time, or doing an abrupt shutdown of the VM. Other tests for VMs
involve throttling resources like memory, CPU, and disk space, adding latency
to matching traffic, or blocking access to DNS servers at the network layer.

The best way to properly test your system is to integrate chaos testing into
your existing test suite, as chaos testing is only one tool in your testing
tool belt. Consider the integration of Gremlin into OpenText™ Professional
Performance Engineering for example—it allows you to connect your Gremlin
account via API keys to OpenText Professional Performance Engineering and
run Gremlin in app. This allows you to add chaos testing to an already solid
testing approach.

OpenText Professional Performance Engineering also integrates with Steadybit,
a chaos testing tool that supports both off cloud and SaaS to allow customers
the flexibility to operate within their own security guidelines.

OpenText Professional Performance Engineering is meant for use on premises
for local teams. It works by simulating virtual users (Vusers) that generate load
by making application requests to your test target. The target must receive and
acknowledge a response within a set timeframe to pass the performance test.

If your team is globally distributed on premises or is migrated to the cloud,
OpenText™ Enterprise Performance Engineering integrates with Steadybit and
OpenText™ Core Performance Engineering integrates with Gremlin to meet your
chaos testing needs. OpenText performance engineering solutions are the only
performance engineering tools that offer both off cloud and SaaS chaos options.

Examples of test targets for OpenText performance engineering solutions
include ERP apps such as Oracle® E-business or SAP®, mobile, web, web 2.0,
protocols like DNS, SMTP, FTP; Database (ODBC), and remote access (RDP,
Citrix®)—but there are many more.

https://www.gremlin.com/
https://community.microfocus.com/adtd/b/sws-alm/posts/chaos-engineering-within-performance-engineering
https://www.opentext.com/products/loadrunner-professional
https://www.opentext.com/products/loadrunner-professional
https://www.opentext.com/products/loadrunner-enterprise
https://www.opentext.com/products/loadrunner-cloud

Copyright © 2024 Open Text • 10.24 | 262-000143-001

Conclusion
Chaos testing is all about strengthening system resilience. It’s not meant to
replace the testing you already do—instead, it complements your existing
testing tools by finding bugs and vulnerabilities that companies usually miss.

Steps for succeeding through chaos:
• Increase service resiliency and ability to react to failures.

• Apply chaos principles continuously.

• Create and organize a central chaos engineering team.

• Follow best practices for chaos testing.

When you’re ready to start chaos testing, consider OpenText performance
engineering solutions ›

Resources

OpenText™ Professional
Performance Engineering ›

OpenText™ Enterprise
Performance Engineering ›

OpenText™ Core
Performance Engineering ›

OpenText™ DevOps Cloud ›

https://www.opentext.com/products/performance-engineering
https://www.opentext.com/products/performance-engineering
https://www.opentext.com/products/loadrunner-professional
https://www.opentext.com/products/loadrunner-professional
https://www.opentext.com/products/loadrunner-enterprise
https://www.opentext.com/products/loadrunner-enterprise
https://www.opentext.com/products/loadrunner-cloud
https://www.opentext.com/products/loadrunner-cloud
https://www.opentext.com/products/devops

	Introduction to chaos testing
	How chaos testing works
	Why use chaos testing?
	How to start chaos testing
	Conclusion

