
WHITE PAPER

The need for a
software bill of materials
Whether you produce, purchase, or operate software, insights
into the supply chain will provide you with a range of benefits

The need for a software bill of materials 2/22

Contents

The software bill of materials 3

What is a software bill of materials? 3

Drivers, motivators, and challenges 7

The software bill of materials: The SBOM file 12

The software bill of materials: SBOM with OpenText Core
Software Composition Analysis 18

Conclusion 22

The need for a software bill of materials 3/22

The software bill of materials

The software bill of materials (SBOM) helps provide
numerous insights to an organization. In this white paper, we
will discuss several aspects of the SBOM, including benefits
and drivers for adoption, and dig a bit deeper into the actual
SBOM files and formats. But let us start with defining what
an SBOM is.

What is a software bill of materials?
Simply put, the software bill of materials (SBOM) is a listing of all software
dependencies that are included in a software application. It includes not
only the direct dependencies used but also the dependencies used by those
dependencies, also known as indirect or transitive dependencies. As such, it
describes the supply chain relationships used when building the software.

A list of ingredients
Just like food in the grocery store has a list of ingredients written on the
package, we can think of the SBOM as a list of ingredients for a software
application. For people with allergies, the list of ingredients can be used to
verify that it does not contain anything unwanted.

Often, people may want to stay away from unethical or unhealthy content or
things with too many unnatural chemicals used only for preservation, color, or
profit. The list is mandatory since we want to allow people to make informed
decisions about the food they buy. The transparency also puts pressure on the
manufacturer to not include unnecessary bad ingredients since the food and
the manufacturer can now be judged by the ingredients.

The SBOM serves a very similar purpose. By listing all packages included in
a software application, users will be able to make informed decisions about
which applications to use based on the included packages, and the developers
will be incentivized to use up-to-date, secure, and well-maintained software.

Not just ingredients
The analogy to ingredients is often used. Yes, it will show you the components
that the software product consists of. But it does not stop there. Looking at
the most common SBOM formats used today, there is also support for adding
valuable metadata about the components.

This metadata can consist of details on known vulnerabilities for the
component. It can also be detailed license information, i.e., the requirements
and the restrictions for including the component in another piece of software.
The metadata can also include how the different components fit together, i.e.,
which component depends on other components. If these relationships are
complete, the SBOM can provide the full dependency graph for all components
in the software.

Simply put, the
software bill of
materials (SBOM) is a
listing of all software
dependencies that
are included in a
software application.
It includes not only the
direct dependencies
used but also the
dependencies used by
those dependencies,
also known as
indirect or transitive
dependencies. As
such, it describes
the supply chain
relationships used
when building the
software.

The need for a software bill of materials 4/22

Thus, while the ingredients analogy is easy to grasp, there can be quite a lot
more to it if the SBOM capabilities are fully used.

Benefits and use cases
The SBOM can be used to provide insights into your software. It is an invaluable
enabler for several business-critical operations related to software development,
software management and software consumption across the value chain.

Not a silver bullet
Before discussing the benefits, we note that the SBOM does not really solve
any problems on its own. It needs to be accompanied by organizational
processes to take advantage of the data it holds. With technical tools and
automations, you will be able to collect, present, and add business value to the
data in the SBOM.

This will make the data actionable and improve software and product security.
It will also allow organizations to be compliant with both licenses and security
requirements. Assuming such tools and processes are in place, let’s look at
some of the benefits the SBOM will give you.

Security
The main claim for success is risk management and risk reduction, with
security being the most well-known use case. It is easy to argue for the
security case. We all want to avoid a costly data breach. In 2022, the average
cost of a data breach was estimated to be $4.24 million. At the same
time, together with phishing, using known vulnerabilities are the two main
attack vectors seen today. Now, add to this that the number of discovered
vulnerabilities is constantly increasing.

With the SBOM listing all software dependencies, it is possible and feasible to
assess if any of these dependencies have known security vulnerabilities. And
if they do, we know to patch them. Without the SBOM, or at least without the
detailed insights into the supply chain that the SBOM provides, there would be
no way of really knowing if the software is vulnerable or not.

This is a game changer for those purchasing and using the software. If there is
a new vulnerability, they can immediately assess if they are exposed.

License compliance
Another benefit is license compliance. Every time we include code written
by someone else, for example, open-source software (OSS), we are using
copyrighted code. We cannot use that code without a license. The license will
tell us what we are allowed to do with the code and under what circumstances.

In some cases, the restrictions and our obligations are rather heavy if we want
to include the code in distributed software. With the SBOM, we get insights into
third-party dependencies. Then we can also know what licenses apply to the
different dependencies. These licenses can also be written directly in the SBOM.

The main claim
for success is risk
management and
risk reduction, with
security being the
most well-known
use case. It is easy
to argue for the
security case. We all
want to avoid a costly
data breach.

https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/threat-intelligence/
https://www.ibm.com/reports/threat-intelligence/

The need for a software bill of materials 5/22

Dependency health
Security and license compliance are the two benefits that are most often
discussed in the SBOM context. At the same time, we see that the use of OSS
is increasing, and today’s codebases have around 80–90% OSS. This increased
dependency on OSS presents new challenges, some of which the SBOM can
help meet.

One thing that many organizations are struggling with is how to choose the
best OSS component for a specific task. There can be lots of OSS projects
supporting similar functionality, so which one should we choose? This question
is more important than it may seem at first. You want a project that has
ongoing community support, not one that was or will be abandoned soon. You
also want a project that will patch vulnerabilities, otherwise, there is no safe
version to upgrade to, and you must patch the source yourself.

You may also want to choose a project that engages experienced developers,
a project with reasonable documentation, and perhaps a project with an active
core team. Though there are no current security vulnerabilities or license
compliance risks, all these properties will contribute to a forward risk.

Having a software inventory through the SBOM will help in analyzing the
software dependencies for such forward risks. An automated tool, such as
OpenText™ Core Software Composition Analysis, will automatically scan the
SBOM and present you with a range of metrics that will help you understand
the health of your software dependencies.

Increased transparency
The benefits do not stop here. Using the data to assess security, license
compliance, and health can be seen as very direct benefits. But we also
need to consider the effect of having to supply an SBOM when software is
distributed or sold to customers. With the SBOM, the software is no longer a
black box. There is transparency in what you deliver.

The software provider can no longer hide bad practices when it comes to
patching and vetting the included software, and license compliance need to be
top-of-mind to avoid facing legal problems.

When customers have insight into the components of an application, they can also
check for security vulnerabilities, license compliance, and scrutinize the software
for out-of-date and unsupported components. And by doing this, they can judge
their suppliers by their practices in choosing and maintaining dependencies.

This clearly incentivizes better practices on the supplier’s side. Security
vulnerabilities will affect the customer if they are exploited, so the customer
can put pressure on the supplier to have patched software in the applications.
This will lead to better, more secure, and compliant software.

Having a software
inventory through
the SBOM will help in
analyzing the software
dependencies for such
forward risks.
An automated tool,
such as OpenText
Core Software
Composition Analysis,
will automatically
scan the SBOM and
present you with
a range of metrics
that will help you
understand the health
of your software
dependencies.

The need for a software bill of materials 6/22

Stronger supplier-customer relationships
The supplier can also use the SBOM as a chance to get stronger relationships
with their customers. Consider an organization that chooses between two
suppliers, one of them is able to provide a detailed and up to date SBOM, while the
other is not willing or able to do so. As a customer, which one would you choose?

In one case, you will be in control of vetting the software yourself if you wish,
and the supplier is also incentivized to have good software practices for their
third-party components.

In the other case, you are buying a black box without any possibility of
scrutinizing the application’s components. And why are they not providing
an SBOM? Is it because they just don’t have the tools or knowledge to
produce one, or is it because the software has known vulnerabilities? Or
do they not know if there are vulnerabilities or not? Are they using tons of
outdated software? Do they even know if they do? None of the reasons are
very flattering, and all other things equal, the supplier would surely go for the
supplier that provides an SBOM.

The SBOM will also facilitate an ongoing discussion between the supplier and
the customer. Why did you choose this software? Are we vulnerable to this new
CVE related to an included component? Yes, there will likely be more questions
from customers, some good and some less relevant, but it is a chance for the
supplier to show good practices throughout the software lifecycle. This will
increase confidence in the supplier and improve the relationship between the
customer and the supplier.

Reduce remediation costs and time-to-market
Fixing security problems is more costly the later they are done. Updating to a
secure version of a dependency can be easily done at development time. If
you do it later, there will be added complexity. Updating software that is in
production or that has already been distributed can be very costly.

Using SBOMs and an accompanying process for keeping track of
vulnerabilities, licenses, and health information will allow developers to find
problems quickly. This will also reduce the remediation cost. In fact, having
an SCA tool for keeping track of all these things related to dependencies
will probably quickly pay off when vulnerabilities, licenses, and health are
continuously monitored.

With carefully considered choices for third-party dependencies, there will
hopefully be fewer problems with this software in the future. This includes fewer
vulnerabilities, faster patch processes, no license issues, and better-maintained
software. Less added complexity will allow developers to focus more on
performance, stability, user experience, and added features. In the end, this will
reduce the time-to-market and allow the supplier to be more competitive.

The SBOM presents several benefits to all stakeholders. Though the pure
benefits should be enough to immediately adopt SBOMs, this is often not
enough to push organizations over the edge. Adoption sometimes requires a
push from governments and authorities. In the next section, we will discuss
these drivers as well as the emerging threat landscape and the challenges
presented when faced with SBOM adoption.

Fixing security
problems is more
costly the later they
are done. Updating
to a secure version
of a dependency can
be easily done at
development time.
If you do it later,
there will be added
complexity. Updating
software that is in
production or that
has already been
distributed can be
very costly.

https://debricked.com/blog/sca-tools-overview/

The need for a software bill of materials 7/22

Drivers, motivators, and challenges
SBOMs are not new but have received an increased interest recently. For many
organizations, it has gone from being a nice-to-have thing to a must-have.
This shift is driven partly by new compliance requirements and, in part, by the
cybersecurity threat landscape.

The many benefits discussed earlier, both for suppliers and customers, have
been significant drivers for the popularity of SBOMs. Still, working with an
SBOM presents a set of challenges to be aware of and to overcome. In this
section, we take a more detailed look at the drivers, motivators, and challenges
for the usage.

Compliance and regulatory requirements
New regulations and requirements have appeared from a range of different
organizations, governments, and similar. These requirements are in response to
the many supply chain attacks that we have witnessed over the last few years.

Cybersecurity executive order
Perhaps the one that is most cited is the Biden cybersecurity executive order
from May 2021. It is noted that the private sector needs to step up the game
if they are to provide systems to the United States Federal Government. To
enhance software supply chain security, the order lists a set of requirements
that need to be fulfilled for these suppliers.

One part of the order discusses SBOMs and specifically requires that the
purchaser is provided an SBOM together with the purchased software. At the
same time, the National Telecommunications and Information Administration
(NTIA) was tasked to create a list of the minimum required elements of such
an SBOM.

Proposed DHS law
Related is the H.R.4611—DHS Software Supply Chain Risk Management Act of
2021, which is a proposed law that will require contractors to the Department
of Homeland Security (DHS) to submit an SBOM together with a certification
that there are no security vulnerabilities in the software. Alternatively, if there
are known vulnerabilities, they must provide a list of these.

The EU Cyber Resilience Act
In the EU, there is a proposal for a regulation for cybersecurity requirements,
the Cyber Resilience Act. Regulations are mandatory to follow for all member
states. Among other things, the Cyber Resilience Act requires manufacturers
to draw up an SBOM. Different from the U.S. regulations, this EU regulation will
apply to all manufacturers of products with digital elements that connect to a
device or a network. On the other hand, only top-level dependencies need to
be included in the SBOM.

Adoption sometimes
requires a push from
governments and
authorities. In the
next section, we
will discuss these
drivers as well as
the emerging threat
landscape and the
challenges presented
when faced with
SBOM adoption.

https://debricked.com/blog/software-supply-chain-attacks-part-one/
https://bidenwhitehouse.archives.gov/briefing-room/presidential-actions/2025/01/16/executive-order-on-strengthening-and-promoting-innovation-in-the-nations-cybersecurity/
https://debricked.com/blog/comply-with-the-sbom-requirements-of-the-new-cybersecurity-executive-order/
https://debricked.com/blog/comply-with-the-sbom-requirements-of-the-new-cybersecurity-executive-order/
https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.congress.gov/bill/117th-congress/house-bill/4611/text
https://www.congress.gov/bill/117th-congress/house-bill/4611/text
https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52022PC0454

The need for a software bill of materials 8/22

FDA requirement
For specific markets, the FDA is currently pushing for an SBOM to be a
mandatory requirement for healthcare products. This is in response to an
increased number of cybersecurity incidents in healthcare, as, e.g., reported
by Forbes. Moreover, patient data protected by healthcare products are
typically very sensitive, and service disruption by these products can
jeopardize the life of people.

Other guidelines
In addition, guidelines from the National Highway Traffic Safety Administration
mention SBOM as a means to track vulnerabilities in the vehicle development
process. These guidelines are non-binding and voluntary but underline the
importance perceived throughout several verticals.

The cybersecurity threat landscape
Requirements and legislation will drive the adoption, but these requirements
emerge from the actual need in industry and society. The cybersecurity threat
landscape is present with or without regulations, and many businesses adopt
SBOM practices regardless of external requirements. Let us take a brief look at
the cybersecurity threat landscape and how it is developing.

New vulnerabilities
First, the number of vulnerabilities registered as CVEs in the National
Vulnerability Database is increasing. In 2017, the number of new vulnerabilities
jumped to more than 14,000 after previously never exceeding 8,000 in a year.
Since then, the number has steadily increased, and in 2022 it surpassed 25,000.

There are more vulnerabilities if we include the GitHub Advisory Database and
those that are language specific, e.g., FriendsOfPHP and the Python Packaging
Advisory Database, but there are significant overlaps.

Exploiting vulnerabilities in a common attack vector
A known vulnerability can be used as an attack vector in a breach. With many
vulnerabilities across a range of applications, there are more opportunities to
mount attacks. Surely enough, looking at the top attack vectors as observed by
IBM Security X-Force in the 2022 report, 34% was due to exploiting vulnerabilities,
second only to phishing. Thus, fixing security vulnerabilities must be top-of-mind
for organizations relying on software applications in their business.

Cost of breaches
So, clearly, there are not only breaches due to security vulnerabilities, but they
are prevalent. Add to this; a breach is very costly. The global average cost of a
data breach caused by a vulnerability in third-party components is estimated
to be $4.55 million. If you do not take application security seriously, it is just a
matter of time before it happens.

Requirements and
legislation will drive
the adoption, but
these requirements
emerge from the
actual need in
industry and society.
The cybersecurity
threat landscape
is present with or
without regulations,
and many businesses
adopt SBOM practices
regardless of external
requirements.

https://www.medtechdive.com/news/fda-seeks-more-power-for-medical-device-cybersecurity-mandates/605107/
https://www.forbes.com/sites/forbestechcouncil/2022/12/20/health-care-cybersecurity-past-present-and-future/?sh=47a7a2b91b64
https://www.forbes.com/sites/forbestechcouncil/2022/12/20/health-care-cybersecurity-past-present-and-future/?sh=47a7a2b91b64
https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-09/cybersecurity-best-practices-safety-modern-vehicles-2022-tag.pdf
https://github.com/advisories
https://github.com/FriendsOfPHP
https://github.com/pypa/advisory-database
https://github.com/pypa/advisory-database
https://www.ibm.com/reports/threat-intelligence/
https://www.ibm.com/reports/data-breach
https://www.ibm.com/reports/data-breach

The need for a software bill of materials 9/22

In all, the cybersecurity threat landscape calls for investing in application
security. The alternative is just too costly. With assessing and remediating
security vulnerabilities being a top SBOM use case, it is natural to adopt it.

Reliance on software
Software is shaping our society, and every day we have become increasingly
reliant on software. In the smart city, we try to optimize for sustainability and
efficiency through sensors, actuators, databases, communications,
and processing.

The data that is collected, processed, and stored will often be sensitive, so
we need confidentiality. Also, integrity protection is needed to ensure that the
data is not modified in transit or at rest. All parts and their functionality are
controlled by software.

Since software influences how we live and work, the need to have better
insights into its inner workings becomes more important. The SBOM can be
used to provide at least parts of this insight.

Challenges
From the previous discussion, it should be clear that SBOMs are here to stay.
But, when generating and working with SBOMs, there are several challenges to
consider. It’s not just to generate an SBOM and call it a day. Having an SBOM is
not worth much if you cannot, or do not, use it for its intended purposes.

Completeness
Completeness refers to the SBOM including all data that is expected. Looking at
the various SBOM formats, there is support for many different entries. A complete
SBOM does not have to include all this data. Instead, it does have to cover all
software components that it sets out to include. Moreover, if there is information
for a component that can be expected to be included, this must be included.

Missing components
If information is missing, e.g., there is an open-source software component
that is used but not included in the SBOM, then this poses a risk to the
receiving organization. It could mean critical vulnerabilities that cannot be
listed and assessed. It can also mean that the application uses a component
with a non-permissive license in a way that violates the license. In addition to
the security and license compliance risks, incomplete SBOMs will reduce the
trust in the provider and can delay the time-to-market for an application.

Missing information
The same is true for open-source components that are included, but information
about the component is incomplete. In many cases, vulnerability information is
written directly in the SBOM. Then, if vulnerability information is only taken from
NVD, there will likely be vulnerabilities that are present but not included.

When generating
and working with
SBOMs, there are
several challenges
to consider. It’s not
just to generate an
SBOM and call it a
day. Having an SBOM
is not worth much if
you cannot, or do not,
use it for its intended
purposes.

The need for a software bill of materials 10/22

Known unknowns
It can be argued that an incomplete SBOM can be worse than no SBOM at all.
If we think the SBOM is complete, we will have a false sense of security,
perhaps letting the guard down and not being fully prepared to handle an
exploited security vulnerability. With knowledge of a vulnerability, even if it is
not patched, other measures can be taken to avoid exploitation and breaches.

To help with “known unknowns,” the common SBOM formats have support
for indicating if a dependency relationship is (possibly) incomplete or if all
relations have been accounted for.

Up to date
An SBOM is not a one-off thing. It is a moving target that needs to be kept up
to date. Having an outdated SBOM comes with the same risks as having an
incomplete one, erroneous data.

The SBOM can become outdated for different reasons. An application
continuously developed and updated will soon have an outdated SBOM. New
dependencies will be used, some will be updated to newer versions, while
others might be removed.

Any assessments based on outdated SBOMs risk having errors. Vulnerabilities
can be missed, while some might already be fixed. The first is a security
problem, and the latter gives overhead for developers and security analysts
since there will be false positives in the assessment.

Outdated external data
The SBOM can also be outdated in terms of the external data it can provide.
Security vulnerabilities are constantly discovered. If the SBOM includes a list of
known vulnerabilities, e.g., CVE identifiers, such a list will be outdated as soon
as there is a new vulnerability affecting any of the included components.

This should come as no surprise and looking at the guidelines for how to
use the SPDX specification, it is even explicitly stated that “SPDX consumers
should always assume vulnerabilities enumerated by an SPDX creator to be
out-of-date.” The need for having up to date SBOMs makes it important also to
include a timestamp.

Automation and SCA
To help generate the SBOM, automation is almost always necessary. There
are just too many dependencies in software today, and there is too much
information that needs to be collected and to keep up to date to do it manually.
An automated tool is less error-prone and can generate a full SBOM in a
fraction of the time compared to manual processes.

Instead of having to constantly update the SBOM due to external changes, an
SCA tool can be used to keep track of vulnerabilities, alert you when they arise,
and even help you to fix them. This will always provide an up-to-date view of
the risks. For developers, by integrating the code repositories with the SCA
tool, the view will also update when there are new or updated components.

Any assessments
based on outdated
SBOMs risk having
errors. Vulnerabilities
can be missed,
while some might
already be fixed. The
first is a security
problem, and the
latter gives overhead
for developers and
security analysts
since there will be
false positives in the
assessment.

https://debricked.com/blog/sca-tools-overview/

The need for a software bill of materials 11/22

Actionable
The SBOM is useless if the information in it is not used. It cannot do anything
on its own, which is why it is crucial that it is actionable. This means that both
the content of the SBOM needs to be in a format that can be easily consumed
and that its content can be used for the use case it is generated for. It also
means that there need to be organizational processes in place to use the
SBOM when it is received.

Targeting the use case
An SBOM with only license information could be sufficient if only license
compliance is considered, but not if you need to certify that there are no
vulnerabilities. If you want to use the SBOM to create an attribution report for
your use of open-source software, the license text also needs to be included. It
is not enough with the license name.

The current threat landscape with an increasing number of vulnerabilities and
attacks should be enough drivers for adopting SBOMs on a wider scale. If
that is not enough, the push from regulations and authorities will surely help
organizations in the right direction.

However, as we have seen, it is not just to turn a switch and have everything
working in two shakes of a lamb’s tail. Some challenges need to be considered
for a purposeful deployment.

To help push forward, to have automation, and to have interoperability
between organizations, there are a few well-defined formats for encoding the
SBOM information.

The leading formats, SPDX and CycloneDX, will be described in the next section.

The current threat
landscape with an
increasing number
of vulnerabilities and
attacks should be
enough drivers for
adopting SBOMs on a
wider scale. If that is
not enough, the push
from regulations and
authorities will surely
help organizations in
the right direction.

The need for a software bill of materials 12/22

The software bill of materials: The SBOM file
There are a few different formats for storing and encoding SBOM information.
The most well-known targeting supply chain transparency is the SPDX and the
CycloneDX formats.

In this section, we take a deeper dive into these formats and provide a comparison
between them. We also briefly discuss the SWID tags, which can also be used for
SBOM information, but has a somewhat different target use case.

NTIA minimum elements
The Cybersecurity Executive Order instructed (among others) the National
Telecommunications and Information Administration (NTIA) to publish a set
of minimum elements for an SBOM. These elements are divided into three
categories.

• Data fields

• Automation support

• Practices and processes

Let us discuss these categories in a little more detail.

Data fields
The data fields define what data an SBOM should include. This is the minimum
amount of information required for each component, as well as metadata for
the SBOM file itself. Seven data fields are defined. These are the supplier of
a component, the component name, its version, other unique identifiers, the
relationship between the dependencies, i.e., which upstream components are
used by a component, the author of the SBOM, and a timestamp.

Having other unique identifiers will allow the component information to be
mapped to known vulnerabilities and licenses. Such mappings assume that the
component is not confused with other components of a similar name. The main
unique identifiers are CPE, PURL, and SWID.

Automation support
The vast number of components, and their relations, require tools support
for both reading and generating the SBOM. Automation and tools support will
also ensure interoperability between organizations. Since SBOMs will often
be provided from a supplier to a purchaser/consumer, such interoperability is
crucial for its usage.

While automation requires a machine-readable format, the SBOM should also
be human-readable. This will help with manual troubleshooting and a quick
overview of certain specific data in the SBOM. To support these requirements,
NTIA mandates using one of the SPDX, CycloneDX, or SWID data formats for
an SBOM. This list might be expanded in the future, but proprietary formats
should be explicitly avoided.

The vast number
of components,
and their relations,
require tools support
for both reading and
generating the SBOM.

https://www.ntia.gov/files/ntia/publications/sbom_minimum_elements_report.pdf

The need for a software bill of materials 13/22

Practices and processes
NTIA defines several minimum requirements for the processes surrounding the
creation and management of SBOMs. Related to the frequency of generating
an SBOM, it must be generated every time there is a new software release.

The dependencies used in software can be seen as a tree hierarchy, with the
direct dependencies at the top and the upstream transitive dependencies
below. At a bare minimum, the SBOM must include all top-level direct
dependencies. These should be provided with enough detail so that it is
possible to find the transitive dependencies. Additionally, it must be clear
if there are no further transitive dependencies or if the presence of such
dependencies is unknown.

NTIA also highlights the importance of starting with generating and providing
SBOMs as soon as possible. This includes accepting that an SBOM can have
some initial errors and omissions, but instead of waiting for perfection, SBOM
practices should start today.

Two main formats: SPDX and CycloneDX
There are two main formats for SBOMs that are widely used and accepted.
SPDX, which is maintained and supported by the Linux Foundation, and
CycloneDX, maintained and supported by OWASP.

Let us briefly look at the SPDX and CycloneDX files to get a feeling for the
information they can contain. Both formats have support for much more data
than given here, and we refer to the respective specifications for details. The
information provided here is based on SPDX v2.3 and CycloneDX v1.4.

Inside the SPDX SBOM file
An SPDX SBOM consists of a set of sections. The first part, which is
mandatory, is the meta-information about the SPDX file. This is called the
Document Creation Information. This includes, e.g., when the SBOM was
created, which tool was used to create it, which SPDX version it is based on,
and other SPDX documents that are referred to in this document.

PACKAGE INFORMATION

Then there are sections for each of the packages. Each package includes basic
information on its name, version, and download location. There is also a unique
identifier to be used within the SPDX document to reference other information.

The package section also includes license information, and if different files
within the package have different licenses, then the complete list of all found
licenses within the package can be listed. The package section in SPDX also
has support for free text comments on licenses, copyright text, and other
types of free text comments on the package in general.

Two main formats
for SBOMs are widely
used and accepted.
SPDX, which is
maintained and
supported by the
Linux Foundation,
and CycloneDX,
maintained and
supported by OWASP.

https://spdx.dev/specifications/

The need for a software bill of materials 14/22

SECURITY INFORMATION IN EXTERNAL REFERENCES

An important field is the one for external references. This field can be used to
refer to an external source for more information about the package.

One defined category for external information is security, which can be
used to link to advisories, fixes, or URLs with security-related information.
The advisory can include links to CVEs, the vendor’s vulnerability disclosure
document, or even security information formatted in a CycloneDX SBOM file.

FILES AND SNIPPETS

Following information about a package, it is also possible to add information
about specific files inside a package. Such information is given in a separate
section after the corresponding package section. Further details can be
given in yet another section referring to specific snippets inside a file. These
snippets can be referenced by byte ranges or line numbers and can have
licenses that are different from the rest of the file or from the package.

DESCRIBING THE DEPENDENCY GRAPH

In the package, file, and snippet sections, the data given in each element is
independent of the others. The relationship between a package and its files
is implicit in that the files section follows the corresponding package section.
But there can also be relationships between files and, maybe more importantly,
relationships between packages. One package typically depends on another
package, and there are transitive dependencies such that one package will
depend on a package that, in turn, depends on a third package, etc.

These relations between components are described in their own section. The
relationship can be one of many but “depends on” and “dependency of” are
useful for describing the dependency graph for the software.

The relation can also be marked to indicate that a part of the graph might be
incomplete or that the creator assures that it is complete.

Inside the CycloneDX SBOM File
Similar to SPDX, CycloneDX starts with identification information and
metadata. This specifies that it is a CycloneDX SBOM, which specification
version it conforms to, and the SBOM version for that particular software. Then
there is, e.g., a timestamp and an identifier for the tool used to generate the
SBOM (or the author if it was manually generated).

COMPONENTS

Following the metadata, the components are described. The component
type is defined as, e.g., file, container, library, or application. Some notable
component information includes the component’s type, name, and version.

To make it uniquely identifiable, it can also include one or several of the
CPE, PURL or SWID identifiers. This will allow the SBOM file to be used to
identify and monitor new vulnerabilities in the software. The component
information will also include license information. It will hold the license ID but

Similar to SPDX,
CycloneDX starts
with identification
information and
metadata. This
specifies that it is a
CycloneDX SBOM,
which specification
version it conforms to,
and the SBOM version
for that particular
software.

https://cyclonedx.org/docs/1.4/json/
https://cyclonedx.org/docs/1.4/json/

The need for a software bill of materials 15/22

can also include the license text itself or a URL pointing to the license file.
Each component can also include a bom-ref identifier which can be used to
reference the component in other parts of the SBOM.

SERVICES

Separate from components, it is also possible to list services, e.g., microservices.
The SBOM can then be used to define if using a service crosses a trust boundary
if it requires authentication and specific API endpoints for a service.

EXTERNAL COMPONENTS

CycloneDX has also support for adding external references. These can be
either declared as part of a specific component or be defined outside the
components part of the SBOM. External references are added in the form of
URLs to the information.

DESCRIBING THE DEPENDENCY GRAPH

The relationship between dependencies is documented in a separate part.
It is here possible to refer to a component using the bom-ref attribute and
to declare which other components it directly depends on. Doing this for all
components will provide a dependency graph of the software that represents
both direct and transitive relationships between dependencies.

COMPOSITIONS AND ASSEMBLIES

CycloneDX has also support for describing compositions, which is a collection
of components, services, and dependency relationships. A composition
can describe an assembly which can be seen as a well-defined part of the
software or application that, in turn, can include other parts in a nested
fashion. The composition can also be described with dependencies, which are
parts of the software that requires other independent parts.

VULNERABILITIES

Vulnerabilities are described explicitly in a separate part of the CycloneDX
SBOM. A vulnerability description refers to the bom-ref of the affected
component and can include several pieces of information. This includes
the vulnerability ID, the publisher, references, the CWE identifier, CVSS
information, a description of the vulnerability, advisory information,
timestamps, etc.

It is also possible to include analysis details for the vulnerability, e.g.,
describing it as resolved, exploitable, in triage, or not affecting the component
or service, including a justification for this assessment.

SIGNING DATA

Finally, the complete SBOM can also be signed using a JSON-formatted
digital signature, including the public verification key and a certificate path. In
addition to signing the SBOM, individual parts, such as components, services,
and compositions, can also be individually signed.

Vulnerabilities are
described explicitly
in a separate part
of the CycloneDX
SBOM. A vulnerability
description refers to
the bom-ref of the
affected component
and can include
several pieces of
information.

The need for a software bill of materials 16/22

COMPARING SPDX AND CYCLONEDX

SPDX and CycloneDX share the support for the main use cases in that both
licensing information and vulnerability information is supported. However, they
differ in the extent of the support. Looking at the specifications, it is clear that
SPDX leans more heavily towards the licensing use case, while CycloneDX has
more support for vulnerability information.

LICENSE INFORMATION SUPPORT

As an example for license information, SPDX adds a specific field for
“concluded license,” which can be used if the license can not be determined
or if there has been no attempt to find it. It also has a field for collecting all
licenses in the files of a package and adding comments to the licenses.

The snippet information section also has its own fields for license information.
Such a level of granularity, down to specifying snippets of files, is not supported
by the CycloneDX specification. As part of the SPDX specification, there is also
the SPDX license list. This list provides a standardized short identifier for all
commonly found licenses. This identifier is becoming an industry standard for
identifying licenses and is also used by CycloneDX SBOMs.

SECURITY AND VULNERABILITY INFORMATION SUPPORT

Looking at security, CycloneDX defines a large number of fields related to
vulnerabilities, their metadata, assessment, and the actions taken for them.
This data is not explicitly supported by SPDX, though it is possible to use
external references to include some security data.

Another security-related difference is the support for digital signatures in
the CycloneDX SBOM. Both the SBOM and parts of the data inside it can be
digitally signed to provide data authentication and non-repudiation for the
data. It is, of course, also possible to digitally sign an SPDX document. Still, it
has no support for enveloped signatures, as is the case for CycloneDX, i.e., the
signature is part of the signed document.

Encoding of Data
Both SPDX and CycloneDX support JSON formatted data, while SPDX
additionally supports YAML, RDF, a tag: value text file, and XLS spreadsheets.
CycloneDX has XML support, while SPDX is looking to add this support in the
next release.

Software Identification (SWID) Tags
As noted above, NTIA also includes the possibility of using Software
Identification (SWID) Tags as an SBOM format. A SWID tag can include the
information needed for transparency in the open source software supply
chain, but its main use case is somewhat different. A SWID tag is designed
for tracking installed software throughout the lifecycle. Here, throughout the
lifecycle is supported by defining different types of tags for pre-installed and
installed software, as well as patch tags, to define patches to software and
supplemental tags for additional information.

Looking at security,
CycloneDX defines
a large number
of fields related
to vulnerabilities,
their metadata,
assessment, and
the actions taken for
them. This data is not
explicitly supported
by SPDX, though it
is possible to use
external references
to include some
security data.

https://csrc.nist.gov/projects/software-identification-swid/guidelines

The need for a software bill of materials 17/22

The XML-formatted SWID tag will include information about the software,
its license, and the files needed to install the software. It can also include
information on what other packages are needed as a prerequisite for
installation. This will allow for the automated installation of software and for
monitoring what software is installed in a system, which version it has, and
which patches have been installed.

Four Variants of SWID Tags
The corpus tag is used pre-installation and is used by the software installer.
They can authenticate the issuer and be used to verify the integrity of the
software. License information can be used to make sure that no license is
violated before the software is installed.

The primary tag is used to describe software that has been installed. It has a
globally unique tag ID to make it possible to track that particular installation.
It can also link to other SWID tags. Such a link can be defined as a component
if other software is a component of the software. It can also be defined with
a required attribute if it depends on another software component. A simple
example is a productivity suite that has a word processor and a spreadsheet
processor as components. Both these will, in turn, have some common libraries
and functionalities as required.

The patch tag describes a patch rather than the software product itself. It
includes information about which product the patch is for, if other patches
need to be applied before this patch, or if it replaces another patch.

The supplemental tag can be used by the local system to provide additional
information. This could be, e.g., the time of installation.

Tags are tied to installed software
SWID tags are designed to be removed once the installed software is
uninstalled and removed from the system. This shows the close relationship
that the SWID tags have with the installed software. Comparing this to SPDX
and CycloneDX, these two SBOM formats are more descriptive of the software
and its composition and not tied to the particular installation of the software.

For more details, NIST provides an excellent guideline for SWID tags.

Having well-defined formats for storing, communicating, and encoding SBOM
information is vital for its adoption. Both CycloneDX and SPDX have been
widely adopted, and it seems that the current trend is that CycloneDX is
getting the most attention. This can be attributed to the fact that the recent
drivers, e.g., the Biden executive order and the EU cyber resilience act, are
heavily focused on the security benefits for SBOMs.

In the final section, we will show how OpenText Core Software Composition
Analysis supports both exporting and importing of SBOMs to help you stay on
top of security and license compliance.

We favor and
currently support the
CycloneDX format
for SBOMs. This is
not to say that there
are no use cases
that are a better fit
for the SPDX format.
Still, we believe that
the license support
in CycloneDX is
sufficient, and the
additional vulnerability
fields it provides are
very useful.

https://csrc.nist.gov/publications/detail/nistir/8060/final
https://debricked.com/blog/comply-with-the-sbom-requirements-of-the-new-cybersecurity-executive-order/

The need for a software bill of materials 18/22

The software bill of materials: SBOM with
OpenText Core Software Composition Analysis
With OpenText Core Software Composition Analysis, it is easy to both generate
and analyze an SBOM, and there are several ways of doing both. In this
post, we look at some of the possibilities to create and scan SBOM files with
OpenText Core Software Composition Analysis.

We favor and currently support the CycloneDX format for SBOMs. This is not
to say that there are no use cases that are a better fit for the SPDX format.
Still, we believe that the license support in CycloneDX is sufficient, and the
additional vulnerability fields it provides are very useful.

Generating an SBOM
Generating or exporting an SBOM is available for our enterprise-tier customers.
If you have integrated your repositories with OpenText Core Software
Composition Analysis, an SBOM can be generated as a report. You can choose
to generate the SBOM for a single repository or a chosen set of repositories, or
you can generate a global report for all your integrated repositories.

Figure 1. Generating reports in the OpenText Core Software Composition Analysis interface

The SBOM will be generated as a JSON file and emailed to the email address
associated with your account.

Some of the things that will be found in the SBOM generated by OpenText Core
Software Composition Analysis are:

• All dependencies, including transitive dependencies, together with their CPE
and/or PURL identifier.

The need for a software bill of materials 19/22

• The identified license for the dependencies. Both the SPDX license short
name and the actual license text is provided. As external references, we also
point to the URLs of the actual license information. This reference is denoted
“Proof of License” and enables anyone to find the license file easily.

• The vulnerability data for each dependency. This data includes the
vulnerability identifier (CVE, GHSA, etc.), the source, the CWE, a description
of the vulnerability, references to more information, the CVSSv2 and CVSSv3
scores, and dates when it was published and last updated.

• Relations between dependencies. All dependencies are listed for each library,
providing the complete dependency graph for all open-source components. If
a library has no dependencies, this is indicated with an empty list.

Using the API
If you prefer to use our API, the SBOM can be generated using the corresponding
endpoint. There are a few API endpoints to choose from, and we refer to the API
documentation for a complete overview. One of them is to simply generate an
SBOM based on a selected set of repositories, as shown below.

Figure 2. Excerpt from the OpenText Core Software Composition Analysis
API documentation

Here you can choose if you want to include vulnerability and/or license data
as well. Using the API will require an access token. A refresh token can be
generated in your OpenText Core Software Composition Analysis account,
which can be used to generate a JWT token. Or you can just use your login ID
and password to generate a JWT token immediately.

Uploading and analyzing an SBOM
If you have an SBOM and want it analyzed, OpenText Core Software
Composition Analysis can do it for you. We even monitor the dependencies for
new vulnerabilities, and we can alert you if any are found.

If you prefer to use
our API, the SBOM can
be generated using
the corresponding
endpoint. There are
a few API endpoints
to choose from, and
we refer to the API
documentation for a
complete overview.

The need for a software bill of materials 20/22

Manual upload
The easiest way to analyze an existing CycloneDX SBOM is to upload it in the
OpenText Core Software Composition Analysis GUI. Just go to Repository
settings, and click the Manual scan button.

Figure 3. You can manually drag and drop an SBOM to have it scanned

Here you can select the SBOM file or just drag and drop it. The SBOM will show
up as a new repository, listing all vulnerabilities, licenses, and dependencies. If
there is a new vulnerability, it will also show up in the user interface.

Adding SBOM to a repository
The manual scan option will show new vulnerabilities in the UI. If you want to
be alerted, e.g., with an email, every time there is a new vulnerability, then you
can simply add the SBOM to be scanned as part of the CI/CD. When scanning
the repository, OpenText Core Software Composition Analysis will find the
SBOM file and scan it for new vulnerabilities.

Upon a scan, you can set up an automation rule to trigger existing or new
vulnerabilities. You can tailor the automation rule to, e.g., trigger an alert if the
vulnerability is of high or critical severity. Below, we show an example that will
send an email to all OpenText Core Software Composition Analysis account
administrators upon a scan if there is a new vulnerability or a vulnerability with
at least high severity.

If you have an SBOM
and want it analyzed,
OpenText Core
Software Composition
Analysis can do it for
you. We even monitor
the dependencies for
new vulnerabilities,
and we can alert you if
any are found.

The need for a software bill of materials 21/22

Figure 4. Adding a new automation rule

This will allow the administrators to be reminded of high-severity vulnerabilities
on every scan but only to be alerted to lower-severity vulnerabilities once.
Also, vulnerabilities that have been triaged not to affect the organization or
software will not cause any alerts. This is ensured by checking the box “Ignore
unaffected vulnerabilities.”

Let us look at an example of how you can use GitHub for monitoring and
alerting on identifying new vulnerabilities. To trigger a scan, you use a
scheduled GitHub actions workflow. Workflows are added to the .github/
workflows subfolder. For OpenText Core Software Composition Analysis, the
workflow can look like this.

name: Debricked scan

on:

schedule:

- cron: “0 9 * * *”

jobs:

vulnerabilities-scan:

runs-on: ubuntu-latest

steps:

- uses: actions/checkout@v2

- uses: debricked/actions/scan@v1

env:

DEBRICKED_TOKEN: ${{ secrets.DEBRICKED_TOKEN }}

Upon a scan, you
can set up an
automation rule to
trigger existing or
new vulnerabilities.
You can tailor the
automation rule to,
e.g., trigger an alert
if the vulnerability
is of high or critical
severity.

Copyright © 2025 Open Text • 04.25 | 262-000180-001

This will run a new scan of the SBOM every day at 9 am and trigger alerts
according to the automations rule above.

It is, of course, possible to do similar scheduled scans if you are using other
CI/CD tools.

Conclusion
Since OpenText Core Software Composition Analysis supports scanning
and monitoring SBOMs, the SCA tool is not only for software producers
and developers. It is also a powerful tool for purchasers and consumers.
OpenText Core Software Composition Analysis will handle the automation and
interoperability parts, monitor new vulnerabilities and license changes, and
alert you on any significant changes.

Once the requirements to supply an SBOM together with software products
are met, all stakeholders throughout the value chain will be able to better
understand the products’ security. This will lead to more secure products,
better responses to new vulnerabilities, and transparency in the software
supply chain.

Register for OpenText Core Software Composition Analysis for free and
take full control of security, compliance and health with a toolkit that will
revolutionize the way you use open source.

Register for OpenText
Core Software
Composition Analysis
for free and take full
control of security,
compliance and health
with a toolkit that will
revolutionize the way
you use open source.

https://debricked.com/blog/sca-tools-overview/
https://debricked.com/app/en/register
https://debricked.com/app/en/register
https://debricked.com/app/en/register
https://debricked.com/app/en/register
https://debricked.com/app/en/register

	The software bill of materials
	What is a software bill of materials?
	Drivers, motivators, and challenges
	The software bill of materials: The SBOM file
	The software bill of materials: SBOM with OpenText Core Software Composition Analysis
	Conclusion

